Seaborn sns.stripplot Example¶
import pandas as pd
from IPython.display import display
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style('darkgrid')
# load_data
iris = pd.melt(sns.load_dataset('iris'), "species", var_name="measurement")
display(iris.head())
Basic Cat vs Num¶
sns.stripplot(x="measurement", y="value", data=iris)
plt.show()
## Visualize three variables with * hue = *
e.g. cat vs. num vs. cat
sns.stripplot(x="measurement", y="value", hue="species", data=iris)
plt.show()
Visualize three variables with hue = * and dodge = *¶
sns.stripplot(x="measurement", y="value", hue="species", data=iris, dodge = True)
plt.show()
Introduce variance to Categorical features with jitter =¶
sns.stripplot(x="measurement", y="value", hue="species", data=iris, dodge = True, jitter= 0.2)
plt.show()
Better separation of individual data with *edgecolor = *¶
sns.stripplot(x="measurement", y="value", hue="species", data=iris, jitter=0.2, split = True, linewidth=0.5, edgecolor = "white")
plt.show()
Change color palette with * palette = *¶
sns.stripplot(x="measurement", y="value", hue="species", data=iris,
jitter=True, dodge = True, linewidth=0.5, edgecolor = "white", palette = 'Set2')
plt.show()
Reference:¶
- https://seaborn.pydata.org/generated/seaborn.stripplot.html